Linux环境下的网络编程

来源: 作者:otto
    本文介绍了在Linux环境下的socket编程常用函数用法及socket编程的一般规则和客户/服务器模型的编程应注意的事项和常遇问题的解决方法,并举了具体代码实例。要理解本文所谈的技术问题需要读者具有一定C语言的编程经验和TCP/IP方面的基本知识。要实习本文的示例,需要Linux下的gcc编译平台支持。
  Socket定义
  网络的Socket数据传输是一种特殊的I/O,Socket也是一种文件描述符。Socket也具有一个类似于打开文件的函数调用—Socket(),该函数返回一个整型的Socket描述符,随后的连接建立、数据传输等操作都是通过该Socket实现的。常用的Socket类型有两种:流式Socket—SOCK_STREAM和数据报式Socket—SOCK_DGRAM。流式是一种面向连接的Socket,针对于面向连接的TCP服务应用;数据报式Socket是一种无连接的Socket,对应于无连接的UDP服务应用。
  Socket编程相关数据类型定义
  计算机数据存储有两种字节优先顺序:高位字节优先和低位字节优先。Internet上数据以高位字节优先顺序在网络上传输,所以对于在内部是以低位字节优 先方式存储数据的机器,在Internet上传输数据时就需要进行转换。
  我们要讨论的第一个结构类型是:struct sockaddr,该类型是用来保存socket信息的:
  struct sockaddr {
   unsigned short sa_family; /* 地址族, AF_xxx */
   char sa_data[14]; /* 14 字节的协议地址 */ };
  sa_family一般为AF_INET;sa_data则包含该socket的IP地址和端口号。
  另外还有一种结构类型:
  struct sockaddr_in {
   short int sin_family; /* 地址族 */
   unsigned short int sin_port; /* 端口号 */
   struct in_addr sin_addr; /* IP地址 */
   unsigned char sin_zero[8]; /* 填充0 以保持与struct sockaddr同样大
小 */
  };
  这个结构使用更为方便。sin_zero(它用来将sockaddr_in结构填充到与struct sockaddr同样的长度)应该用bzero()或memset()函数将其置为零。指向sockaddr_in 的指针和指向sockaddr的指针可以相互转换,这意味着如果一个函数所需参数类型是sockaddr时,你可以在函数调用的时候将一个指向sockaddr_in的指针转换为指向sockaddr的指针;或者相反。sin_family通常被赋AF_INET;sin_port和sin_addr应该转换成为网络字节优先顺序;而sin_addr则不需要转换。
  我们下面讨论几个字节顺序转换函数:
  htons()--"Host to Network Short" ; htonl()--"Host to Network Long"

  ntohs()--"Network to Host Short" ; ntohl()--"Network to Host Long"

  在这里, h表示"host" ,n表示"network",s 表示"short",l表示 "long" 。
  打开socket 描述符、建立绑定并建立连接
  socket函数原型为:
  int socket(int domain, int type, int protocol);
  domain参数指定socket的类型:SOCK_STREAM 或SOCK_DGRAM;protocol通常赋值“0”。Socket()调用返回一个整型socket描述符,你可以在后面的调用使用它。
  一旦通过socket调用返回一个socket描述符,你应该将该socket与你本机上的一个端口相关联(往往当你在设计服务器端程序时需要调用该函数。随后你就可以在该端口监听服务请求;而客户端一般无须调用该函数)。 Bind函数原型为 :
  int bind(int sockfd,struct sockaddr *my_addr, int addrlen);
  Sockfd是一个socket描述符,my_addr是一个指向包含有本机IP地址及端口号等信息的sockaddr类型的指针;addrlen常被设置为sizeof(struct sockaddr)。

  最后,对于bind 函数要说明的一点是,你可以用下面的赋值实现自动获得本机IP地址和随机获取一个没有被占用的端口号:
  my_addr.sin_port = 0; /* 系统随机选择一个未被使用的端口号 */
  my_addr.sin_addr.s_addr = INADDR_ANY; /* 填入本机IP地址 */
  通过将my_addr.sin_port置为0,函数会自动为你选择一个未占用的端口来使用。同样,通过将my_addr.sin_addr.s_addr置为INADDR_ANY,系统会自动填入本机IP地址。Bind()函数在成功被调用时返回0;遇到错误时返回“-1”并将errno置为相应的错误号。另外要注意的是,当调用函数时,一般不要将端口号置为小于1024的值,因为1~1024是保留端口号,你可以使用大于1024中任何一个没有被占用的端口号。
  Connect()函数用来与远端服务器建立一个TCP连接,其函数原型为:
  int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

  Sockfd是目的服务器的sockt描述符;serv_addr是包含目的机IP地址和端口号的指针。遇到错误时返回-1,并且errno中包含相应的错误码。进行客户端程序设计无须调用bind(),因为这种情况下只需知道目的机器的IP地址,而客户通过哪个端口与服务器建立连接并不需要关心,内核会自动选择一个未被占用的端口供客户端来使用。
  Listen()——监听是否有服务请求
  在服务器端程序中,当socket与某一端口捆绑以后,就需要监听该端口,以便对到达的服务请求加以处理。
  int listen(int sockfd, int backlog);
  Sockfd是Socket系统调用返回的socket 描述符;backlog指定在请求队列中允许的最大请求数,进入的连接请求将在队列中等待accept()它们(参考下文)
。Backlog对队列中等待服务的请求的数目进行了限制,大多数系统缺省值为20。
当listen遇到错误时返回-1,errno被置为相应的错误码。
  故服务器端程序通常按下列顺序进行函数调用:
  socket(); bind(); listen(); /* accept() goes here */
  accept()——连接端口的服务请求。
  当某个客户端试图与服务器监听的端口连接时,该连接请求将排队等待服务器accept()它。通过调用accept()函数为其建立一个连接,accept()函数将返回一个新的socket描述符,来供这个新连接来使用。而服务器可以继续在以前的那个 socket上监听,同时可以在新的socket描述符上进行数据send()(发送)和recv()(接收)操作:
  int accept(int sockfd, void *addr, int *addrlen);
  sockfd是被监听的socket描述符,addr通常是一个指向sockaddr_in变量的指针,该变量用来存放提出连接请求服务的主机的信息(某台主机从某个端口发出该请求);addrten通常为一个指向值为sizeof(struct sockaddr_in)的整型指针变量。错误发生时返回一个-1并且设置相应的errno值。
  Send()和recv()——数据传输
  这两个函数是用于面向连接的socket上进行数据传输。
  Send()函数原型为:
  int send(int sockfd, const void *msg, int len, int flags);
  Sockfd是你想用来传输数据的socket描述符,msg是一个指向要发送数据的指针。
  Len是以字节为单位的数据的长度。flags一般情况下置为0(关于该参数的用法可参照man手册)。
  char *msg = "Beej was here!"; int len, bytes_sent; ... ...
  len = strlen(msg); bytes_sent = send(sockfd, msg,len,0); ... ...

  Send()函数返回实际上发送出的字节数,可能会少于你希望发送的数据。所以需要对send()的返回值进行测量。当send()返回值与len不匹配时,应该对这种情况进行处理。
  recv()函数原型为:
  int recv(int sockfd,void *buf,int len,unsigned int flags);
  Sockfd是接受数据的socket描述符;buf 是存放接收数据的缓冲区;len是缓冲的长度。Flags也被置为0。Recv()返回实际上接收的字节数,或当出现错误时,返回-1并置相应的errno值。
  Sendto()和recvfrom()——利用数据报方式进行数据传输
  在无连接的数据报socket方式下,由于本地socket并没有与远端机器建立连接,所以在发送数据时应指明目的地址,sendto()函数原型为:
  int sendto(int sockfd, const void *msg,int len,unsigned int flags,
const struct sockaddr *to, int tolen);
  该函数比send()函数多了两个参数,to表示目地机的IP地址和端口号信息,而tolen常常被赋值为sizeof (struct sockaddr)。Sendto 函数也返回实际发送的数据字节长度或在出现发送错误时返回-1。
  Recvfrom()函数原型为:
  int recvfrom(int sockfd,void *buf,int len,unsigned int flags,struct sockaddr *from,int *fromlen);
  from是一个struct sockaddr类型的变量,该变量保存源机的IP地址及端口号。fromlen常置为sizeof (struct sockaddr)。当recvfrom()返回时,fromlen包含实际存入from中的数据字节数。Recvfrom()函数返回接收到的字节数或当出现错误时返回-1,并置相应的errno。
  应注意的一点是,当你对于数据报socket调用了connect()函数时,你也可以利用send()和recv()进行数据传输,但该socket仍然是数据报socket,并且利用传输层的UDP服务。但在发送或接收数据报时,内核会自动为之加上目地和源地址信息。
  Close()和shutdown()——结束数据传输
  当所有的数据操作结束以后,你可以调用close()函数来释放该socket,从而停止在该socket上的任何数据操作:close(sockfd);
  你也可以调用shutdown()函数来关闭该socket。该函数允许你只停止在某个方向上的数据传输,而一个方向上的数据传输继续进行。如你可以关闭某socket的写操作而允许继续在该socket上接受数据,直至读入所有数据。
  int shutdown(int sockfd,int how);
  Sockfd的含义是显而易见的,而参数 how可以设为下列值:
  ·0-------不允许继续接收数据
  ·1-------不允许继续发送数据
  ·2-------不允许继续发送和接收数据,均为允许则调用close ()
  shutdown在操作成功时返回0,在出现错误时返回-1(并置相应errno)。

  DNS——域名服务相关函数
  由于IP地址难以记忆和读写,所以为了读写记忆方便,人们常常用域名来表示主机,这就需要进行域名和IP地址的转换。函数gethostbyname()就是完成这种转换的,函数原型为:
  struct hostent *gethostbyname(const char *name);
  函数返回一种名为hosten的结构类型,它的定义如下:
  struct hostent {
   char *h_name; /* 主机的官方域名 */
   char **h_aliases; /* 一个以NULL结尾的主机别名数组 */
   int h_addrtype; /* 返回的地址类型,在Internet环境下为AF-INET */

   int h_length; /*地址的字节长度 */
   char **h_addr_list; /* 一个以0结尾的数组,包含该主机的所有地址*/

  };
  #define h_addr h_addr_list[0] /*在h-addr-list中的第一个地址*/
  当 gethostname()调用成功时,返回指向struct hosten的指针,当调用失败时返回-1。当调用gethostbyname时,你不能使用perror()函数来输出错误信息,而应该使用herror()函数来输出。
  面向连接的客户/服务器代码实例
   这个服务器通过一个连接向客户发送字符串"Hello,world! "。只要在服务器上运行该服务器软件,在客户端运行客户软件,客户端就会收到该字符串。

  该服务器软件代码见程序1:
  #include stdio.h
  #include stdlib.h
  #include errno.h
  #include string.h
  #include sys/types.h
  #include netinet/in.h
  #include sys/socket.h
  #include sys/wait.h
  #define MYPORT 3490 /*服务器监听端口号 */
  #define BACKLOG 10 /* 最大同时连接请求数 */
  main()
  {
  intsock fd,new_fd; /* 监听socket: sock_fd,数据传输socket: new_fd *
/
  struct sockaddr_in my_addr; /* 本机地址信息 */
  struct sockaddr_in their_addr; /* 客户地址信息 */
  n_size;
  if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) { /*错误检测
*/
  perror("socket"); exit(1); }
  my_addr.sin_family=AF_INET;
  my_addr.sin_port=htons(MYPORT);
  my_addr.sin_addr.s_addr = INADDR_ANY;
  bzero(&(my_addr.sin_zero),8);
  if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockad
dr))
   == -1) {/*错误检测*/
  perror("bind"); exit(1); }
  if (listen(sockfd, BACKLOG) == -1) {/*错误检测*/
  perror("listen"); exit(1); }
  while(1) { /* main accept() loop */
  sin_size = sizeof(struct sockaddr_in);
  if ((new_fd = accept(sockfd, (struct sockaddr *)&their_addr,
  &sin_size)) == -1) {
  perror("accept"); continue; }
  printf("server: got connection from %s ",
  inet_ntoa(their_addr.sin_addr));
  if (!fork()) { /* 子进程代码段 */
  if (send(new_fd, "Hello, world! ", 14, 0) == -1)
  perror("send"); close(new_fd); exit(0); }
  close(new_fd); /* 父进程不再需要该socket */
  waitpid(-1,NULL,WNOHANG) > 0 /*等待子进程结束,清除子进程所占用资源
*/
  }
  }
  (程序1)
  服务器首先创建一个Socket,然后将该Socket与本地地址/端口号捆绑,成功之后就在相应的socket上监听,当accpet捕捉到一个连接服务请求时,就生成一个新的socket,并通过这个新的socket向客户端发送字符串"Hello,world! ",
然后关闭该socket。
  fork()函数生成一个子进程来处理数据传输部分,fork()语句对于子进程返回的值为0。所以包含fork函数的if语句是子进程代码部分,它与if语句后面的父进程代码部分是并发执行的。
  客户端软件代码部分见程序2:
  #includestdio.h
  #include stdlib.h
  #include errno.h
  #include string.h
  #include netdb.h
  #include sys/types.h
  #include netinet/in.h
  #include sys/socket.h
  #define PORT 3490
  #define MAXDATASIZE 100 /*每次最大数据传输量 */
  int main(int argc, char *argv[])
  {
  int sockfd, numbytes;
  char buf[MAXDATASIZE];
  struct hostent *he;
  struct sockaddr_in their_addr;
  if (argc != 2) {
  fprintf(stderr,"usage: client hostname "); exit(1); }
  if((he=gethostbyname(argv[1]))==NULL) {
  herror("gethostbyname"); exit(1); }
  if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
  perror("socket"); exit(1); }
  their_addr.sin_family=AF_INET;
  their_addr.sin_port=htons(PORT);
  their_addr.sin_addr = *((struct in_addr *)he->h_addr);
  bzero(&(their_addr.sin_zero),8);
  if (connect(sockfd, (struct sockaddr *)&their_addr,
   sizeof(struct sockaddr)) == -1) {/*错误检测*/
  perror("connect"); exit(1); }
  if ((numbytes=recv(sockfd, buf, MAXDATASIZE, 0)) == -1) {
  perror("recv"); exit(1); }
  buf[numbytes] = \;
  printf("Received: %s",buf);
  close(sockfd);
  return 0;
  }
  (程序2)
  客户端代码相对来说要简单一些,首先通过服务器域名获得其IP地址,然后创建一个socket,调用connect函数与服务器建立连接,连接成功之后接收从服务器发送过来的数据,最后关闭socket,结束程序。
  无连接的客户/服务器程序的在原理上和连接的客户/服务器是一样的,两者的区别在于无连接的客户/服务器中的客户一般不需要建立连接,而且在发送接收数据时,需要指定远端机的地址。
   关于阻塞(blocking)的概念和select()函数
  当服务器运行到accept语句时,而没有客户连接服务请求到来,那么会发生什么情况?这时服务器就会停止在accept语句上等待连接服务请求的到来;同样,当程序运行到接收数据语句时,如果没有数据可以读取,则程序同样会停止在接收语句上。这种情况称为blocking。但如果你希望服务器仅仅注意检查是否有客户在等待连接,有就接受连接;否则就继续做其他事情,则可以通过将Socke设置为非阻塞方式来实现:非阻塞socket在没有客户在等待时就使accept调用立即返回 。
  #include unistd.h
  #include fcntl.h
  . . . . ; sockfd = socket(AF_INET,SOCK_STREAM,0);
  fcntl(sockfd,F_SETFL,O_NONBLOCK); . . . . .
  通过设置socket为非阻塞方式,可以实现“轮询”若干Socket。当企图从一个没有数据等待处理的非阻塞Socket读入数据时,函数将立即返回,并且返回值置为-1,并且errno置为EWOULDBLOCK。但是这种“轮询”会使CPU处于忙等待方式,从而降低性能。考虑到这种情况,假设你希望服务器监听连接服务请求的同时 从已经建立的连接读取数据,你也许会想到用一个accept语句和多个recv()语句,但是由于accept及recv都是会阻塞的,所以这个想法显然不会成功。
  调用非阻塞的socket会大大地浪费系统资源。而调用select()会有效地解决这个问题,它允许你把进程本身挂起来,而同时使系统内核监听所要求的一组文件描述符的任何活动,只要确认在任何被监控的文件描述符上出现活动,select()调用将返回指示该文件描述符已准备好的信息,从而实现了为进程选出随机的变化,而不必由进程本身对输入进行测试而浪费CPU开销。Select函数原型为:

  int select(int numfds,fd_set *readfds,fd_set *writefds,fd_set *ex
ceptfds,struct timeval *timeout);
  其中readfds、writefds、exceptfds分别是被select()监视的读、写和异常处理的文件描述符集合。如果你希望确定是否可以从标准输入和某个socket描述符读取数据,你只需要将标准输入的文件描述符0和相应的sockdtfd加入到readfds集合中;numfds的值是需要检查的号码最高的文件描述符加1,这个例子中numfds的值应为sockfd+1;当select返回时,readfds将被修改,指示某个文件描述符已经准备被读取,你可以通过FD_ISSSET()来测试。为了实现fd_set中对应的文描述符的设置、复位和测试,它提供了一组宏:
  FD_ZERO(fd_set *set)----清除一个文件描述符集;
  FD_SET(int fd,fd_set *set)----将一个文件描述符加入文件描述符集中;

  FD_CLR(int fd,fd_set *set)----将一个文件描述符从文件描述符集中清除 ;
  FD_ISSET(int fd,fd_set *set)----试判断是否文件描述符被置位。
  Timeout参数是一个指向struct timeval类型的指针,它可以使select()在等待timeout长时间后没有文件描述符准备好即返回。struct timeval数据结构为:

  struct timeval {
   int tv_sec; /* seconds */
   int tv_usec; /* microseconds */
  };
  我们通过程序3来说明:
  #include sys/time.h
  #include sys/types.h
  #include unistd.h
  #define STDIN 0 /*标准输入文件描述符*/
  main()
  {
   struct timeval tv;
   fd_set readfds;
   tv.tv_sec = 2;
   tv.tv_usec = 500000;
   FD_ZERO(&readfds);
   FD_SET(STDIN,&readfds);
   /* 这里不关心写文件和异常处理文件描述符集合 */
   select(STDIN+1, &readfds, NULL, NULL, &tv);
   if (FD_ISSET(STDIN, &readfds)) printf("A key was pressed! ");

   else printf("Timed out. ");
  }
  (程序3)
  select()在被监视端口等待2.5秒钟以后,就从select返回

时间:2001-06-05 01:39 来源: 作者:otto 原文链接

好文,顶一下
(1)
100%
文章真差,踩一下
(0)
0%
------分隔线----------------------------


把开源带在你的身边-精美linux小纪念品
无觅相关文章插件,快速提升流量